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1. OVERVIEW
Randomness, in some intuitive sense, is all around us in the real world. Hence
it is the proper object of scientific study.

In two recent publications (KALMAN [8, 9]) we have argued that a scientific
study of randomness (never really undertaken before) should begin by separat-
ing the intuitive concept of “random” from any immanent or implied relation
with “probability”, whatever that word may mean. This is just the opposite
of the usual procedure; for example, in axiomatic probability theory “random”
is given a meaning only after the probabilities have been defined.

In this paper we take a position, the scientific one, on the opposite side
from that of Dennis Lindley, a well-known Bayesian, whose conviction is that

Probability is the only satisfactory description of uncertainty.
LINDLEY [10, p. 17].

Lindley’s position might be labeled — without in any way questioning its
honesty — as a religious' one, or a dogmatic one, or even a fanatical one.

Indeed, “mainstream” probability theory in its various forms (abstract ax-
iomatic, naive, Bayesian, etc.) has come largely under the influence of the
religious point of view, but there is surely no consensus; see, for example the
introductory comments of PINCUS and SINGER [12].

Granted that there is no rigid connection (in the scientific sense) between
randomness and probability and that randomness, as a basic phenomenon is
now somewhat better understood in the light of KALMAN [8, 9], we may venture
to proceed, as the next step, to the scientific study of probability. We should
ask:
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e does probability exist in the real world?
e if so how is it created?

e is it a physical concept?

The history of probability is not a chapter in the history of science. Prob-
ability theory — or more properly, abstract axiomatic probability as it is con-
ceived today — is the result of a long epistemological development, mainly since
about 1700, and it was influenced in turn by problems motivated by games
of chance, lotteries, insurance, opinion surveys, prediction of economic events,
etc., all of which are man-made phenomena. In this evolution, the questions
asked were: what is chance? what is a random choice? what is probabil-
ity? — always questions in the abstract and not primarily aimed at a better
understanding of the real world. Research in probability resulted in a nice
axiomatic formatting of abstract answers to the abstract questions, but there
was no concern for contact with the physical world. Yet the net result, perhaps
regrettably, was that “probability” acquired a meaning that made it seem, in
the eyes of the man of the street and many intellectuals as well, at least as real
and as physical as, say, mass or gravitation or advertising.

The main object of this paper is to initiate a study of probability from the
scientific point of view. We are quickly led to two major results:

(i) The old-fashioned, pre-abstract notion of probability, known as relative
frequency (the number of interesting events divided by the number of all
events), is a perfectly natural mathematical starting point; it hasn’t been
adequately researched until now; it could lead to a rich theory in the near
future.

(ii) Frequency (the old, revived notion of probability) is not universal; it does
not exist in the abstract; it cannot be made to exist by axiom; it must be
deduced from “interactions” within a system; it is a system attribute.

2. WHY IS PROBABILITY NOT A SATISFACTORY WAY OF LOOKING AT
RANDOMNESS?
There are two aspects:

(a) technical: rigorous probability theory lives in world A, a world, which,
seemingly, is incommunicado with concrete mathematics that lives in world
R that, for us, is the real world;

(b) operational: probability theory says almost nothing about different “kinds”
of randomness.

See Figure 1.
Both difficulties are old and very well known. As an illustration, let us
mention two typical unsolved problems:

(i) The infinite sequence of decimal digits of an irrational number.
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FIGUureE 1
Consider
(2.1) \/5 —1=10.4142135623 7309504880 1688724209. ..

Examination of (even a few of) these digits indicates that they are, to the naked
eye and to formal statistical analysis, random, in some sense. More precisely,
it can be verified, by using lots of digits (if needed, millions), that each single
digit occurs approximately 11—0 of the time, each pair of adjacent digits occurs
approximately ﬁ of the time, each triple 101W of the time and so forth. This
is the empirical evidence. It should be possible to formulate a theorem in the
R-world which expresses these known facts in precise language, but no such
theorem is presently known.

However, there is a classical theorem of BOREL [2] (see HARDY and WRIGHT
[6 p. 124]), in the A-world, which asserts that almost every number on the unit
interval is normal, that is, the above property concerning the frequency of digits
holds not only for decimal expansions but for all expansions to an integer base
= 2 (binary expansion), 3 (ternary expansion), .... This is an early, pioneering
example of defining randomness (here made precise as “normality”) via abstract
probability. The reason why Borel’s theorem is not applicable to the R-world
is that the command “take a point at random on the unit interval” cannot be
defined (as far as is known) in the R-world.

Since the arrow A — R in Figure 1 is not known (and probably does not
exist) there is no way of transferring a definition of randomness from A to R.
And if we want to prove the randomness of the decimal digits of a particular
number such as v/2 — 1, it seems that we must somehow do it without help
from Borel’s theorem, work exclusively in the R-world, and give up hope of
being guided by probability theory.

(ii) Finite sequences of zeros and ones.

Consider the following sequence of sixty zeros and ones.

(2.2) 0111100110 1101000111 0101100000 1000011001 0010111000 1010011111
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This sequence could be regarded as part of a coin-tossing (or Bernoulli) se-
quence (see FELLER [5, p. 104]). But is it really that? Does it contain, perhaps,
some typing errors??

Let’s look at the sequence (2.2) from the point of view of digit statistics.
The result is highly suggestive:

digit sequence |0 1 00 01 10 11 000 001 010 011

number of occurrences | 30 30 15 15 15 15 7 8 8 8

Each consecutive digit sequence of length r < 3 seems to have (almost exactly)
the same frequency — is this a case analogous to (2.1)?

For both examples, the basic question, relevant to the R-world, is: are the
sequences (2.1) and (2.2) “random”? In what sense?

The usual answer of epistemologists (ATLAN [1, p. 118], CHATFIELD [3]),
slightly paraphrased, is the following:

if you know that the sequence was generated by tossing a (fair) coin (an
event in the A-world), then the sequence is random (i.e., it is a classical
Bernoulli sequence, with equal probabilities of % for 0 and 1);

but

if you know that the sequence was generated by a known rule (an event in
the R-world), then the sequence is not random.

The dilemma is: if we are given the sequences (2.1) or (2.2), but no other
information, what do we know about them? Can we determine how they were
generated?

It seems that an element of subjectivity cannot be excluded; therefore the
concept “random” cannot be well defined mathematically in a concrete case
like (2.1) or (2.2). The phrase “a finite sequence is random” in such a context
has no scientific meaning, it cannot be either confirmed or contradicted.

Probability is not much help in dealing with randomness in the R-world. If
(2.2) is Bernoulli® its probability is 279, as is the probability of any Bernoulli
sequence of sixty digits. Probability theory in this situation merely describes
the collection of all 0/1 sequences of sixty digits and states what the probability
of each individual sequence is.*

The difficulty in not being able to define randomness via conventional prob-
ability theory in the R-world can only be avoided by changing the very defini-
tion of randomness (or nonrandomness) which means going back to the most
primitive level of the conceptual discussion. Such considerations led to a new
(primordial) definition of randomness adopted in KALMAN [8, 9].

Accordingly, in this paper, any sequence is called RANDOM?® if it is (rather
vaguely speaking) not “unique”. More precisely, for the digit sequences of the
two examples, nonRANDOMness means “consisting of a single digit”. Thus our
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RANDOMness is the opposite of (strong) regularity, much like “nonlinear” is the
opposite of ”linear”. RANDOMness is not the opposite of “deterministic”.

Starting with the new notion of RANDOMness we shall show that it leads
naturally to a well-defined notion of “probability”; this is not the abstract
probability of the mainstream theory, nor the naive probability of dice playing
or card games — but the classical idea of relative frequency.%

3. CLASSICAL RESULTS ABOUT RANDOMNESS IN THE REAL WORLD
The examples in the preceding sections are frequently viewed intuitively as the
R-world projection, or approximation, of i.i.d processes in the A-world. (“i.i.d”
means independent, identically distributed.) But it seems that there are in fact
no i.i.d. processes in the R-world — at least not in the strict sense. The trouble
is the requirement of “independence”.

Because we are interested in randomness in the R-world, we need to modify
the problem setting to get away from the constraints imposed by the A-world
notion of “independence”. This suggests two questions:

(I) How does randomness arise in the R-world?
(IT) Why do we often observe “equidistribution”, that is, equal frequencies, of
random events in the R-world?

Relevant to both of these questions is a famous theorem (situated in the R-
world, period 1909-1916), usually known as the Gleichverteilungssatz (equidis-
tribution theorem), reviewed at length in KALMAN [8, p. 148 and 9, p. 48|.

We first define equidistribution. Consider a finite set of points X7 = {x; :
t=1, ..., T} on the open unit interval and let J = (a,b) C (0,1). The points
in Xt are exactly equidistributed if the following is true: for all J

number {z; € J}
T

(3.1) =b—a = length J.
This condition is rather hard to satisfy for every interval J since the ratio on
the left side of (3.1) is rational by definition while b — a = length J may be
irrational. So it is natural to claim equidistribution holding only in the limit
T — oo.

This provides some rationale for the classical formulation of the

GLEICHVERTEILUNGSSATZ (WEYL [14]). Consider the set Xp =
{at (mod 1) : ¢t =1, ..., T}. Exact equidistribution on the open unit in-
terval holds in the limit T' — oo if and only if a = irrational.

If we view (@ mod 1) -27 as a fixed rotation (less than a full turn), then
given any angle § < 27 the angle (ot mod 1) -2x will be arbitrarily close
to @ for some ¢; and for large T' the rotations {(at mod 1)-2m, ¢t < T} will
be spread out roughly evenly over the circle, not omitting any subinterval.
This is the operational meaning of the technical term “ergodic”. In current
pure-mathematical language, we would say: irrational rotations are ergodic.
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Mathematicians educated in the early 1900’s tended to view the theorem
as a new characterization of irrational numbers.

In KALMAN [8, 9] we pointed out that the theorem can be viewed, alterna-
tively, as responding to a fundamental problem of statistics: how to take a finite
random sample of (the population of) points uniformly distributed on the unit
interval — but without requiring that the sampling process, ..., at (mod 1),
a(t+ 1) (mod 1), ... is independent from sample to sample.

In view of these well-known aspects of the Gleichverteilungssatz, it is per-
haps surprising that it also answers, implicitly, questions (I) and (II) posed at
the beginning. To make this clear, we reformulate the theorem. The condi-
tion “a = irrational” is dropped because it turns out to be irrelevant for our
purposes; “exact equidistribution” is replaced by “as equidistributed as pos-
sible” ) in order to avoid technicalities stemming from the format rather than
the content of formula (3.1); finally, after these changes, it is possible to re-
lax the “unphysical” requirement 7' — oco. Roughly speaking we arrive at the
conclusion: all rotations are ergodic.

The new formulation is:

EXTENDED EQUIDISTRIBUTION THEOREM. Consider the set Xp =
{at (mod 1) : @ > 0, t =1, 2, ..., T}. For suitably large T these points
on the open unit interval are as equidistributed as possible.

SKETCH OF PROOF. First consider a rational o = k/q, k, g coprime positive
integers, k < g. The definition of the set X,_; suggests examining the map

(3.2) p:t— kt (mod q)
which sends the positive integers Z+ into the finite set
(3.3) Z5 o ={1,2, ..., ¢—1}.
It is trivial but essential to note that
(3.4) p is an isomorphism on thl.
Indeed, k(t2 —t1) = 0 (mod ¢q) implies g|(t2 —t1) which is impossible for 1, t2
in Z,.
As t is enumerated 1, 2, ..., ¢ — 1 the points

u=kt (mod q), t€ Z;[l

exhaust the set Z;‘_l,

corresponding points

(3.5) {@,t:l,...,q—l}

are placed RANDOMLY on the unit interval; by (3.4) the points (3.5) are just

l
(3.6) Z5 g = {5, le Z;_—l}

in some RANDOM sequence. As t is enumerated, the
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and so these points are uniformly distributed on the unit interval. (The end
points of the interval are not counted, in accordance with the condition a > 0;
so the indices ¢ = l¢g = 0 (mod ¢) are omitted in the enumeration of points
for T large, and the number of T of all “events” in the denominator of (3.1) is
correspondingly modified.)

This description of the set X, ; makes it clear how “as equidistributed
as possible” should be interpreted. For example, for ¢ = 2, we consider the
sequence t = 1, 3, 5, ... (the other values of ¢ yielding 0 (mod 2) which is
disregarded), so we have a set consisting of copies of the midpoint % of the
unit interval. Given that this point is the only one allowed in the interior of
the unit interval, the set is “as equidistributed as possible”. The same picture

holds for o = 2, 1, 2, etc.” “Suitably large T” means T' = q, 2g, ..., and it
is understood that the “events” ¢t = ¢, 2q, ... are excluded from the count.

The case of a = irrational is handled in the same way as in the proof of
Gleichverteilungssatz given in Hua [7, Theorem 10.11.1, p. 269]; in this case
we get “exact equidistribution” as in the classical version. a

Precisely, how does all this analysis answer the two questions posed at the
beginning?

QuestioN (I). RANDOMness arises from the fact that:
p = isomorphism of a finite set = permutation.

A permutation is an example of RANDOMness; a permutation is a basic ran-
domizing operation, as in shuffling cards. A single permutation is of course not
expected to produce “perfect” randomness, just as a single shuffle of cards will
not produce a “perfectly” shuffled deck, whatever that means. (See the work
of D1AcONIs [12] and of his collaborators.) In the R-world there seems no way
to avoid viewing any permutation as RANDOM.?

QuestioN (II). Equidistribution arises from the fact that the permutation
p “lives” on the largest possible set in the unit interval: Zq+_1 /q for rational
a, the whole open interval for irrational «. This situation is peculiar to the
special definition of the set X7 in the Gleichverteilungssatz and to the special
map p given by (3.2).

It is worthwhile to recall here a remark of THOM [1986, p. 25]. Consider
an irrational (transcendental) of the Liouville type, for example,

a= Z 107t
t>0

It is well known that such irrationals are extremely well approximable by ra-
tionals; for any given r there is a (large) g so that we have

k‘ 1

a——| < —.

q qr

The set X7 has its points tightly clustered around {1/¢, ..., (¢ — 1)/q} and

2

these points are “as equidistributed as possible”, as long as T' < ¢"* (say);
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but as ¢" < T — oo, the new points slowly drift away and in the limit become
exactly equidistributed. Thus there is a kind of transition between different
kinds of RANDOMness but not a violation of the claim “as equidistributed as
possible”. In other words, conventional statistics (histograms) would not reveal
any unusual behavior. Approximate equidistribution holds for all large T' but
there is something happening which is not yet well understood.

4. RANDOMNESS OF THE DIGITS REPRESENTING RATIONAL NUMBERS

The sequences {at (mod 1)} analyzed by the Gleichverteilungssatz may be
viewed as a “model” of certain kind of RANDOMness in the R-world. Un-
fortunately, the behavior of these sequences does not seem to be relevant to
understanding the examples of Section 2. Perhaps the Weyl model is too sim-
ple.

It is surprising that a deeper and probably more “natural” study of ran-
domness and probability can be initiated by looking at the very old, very
elementary, but not completely understood problem of the “fractional part” of
a rational number as displayed by its expansion with respect to an arbitrary
base b (= integer > 1).

For k, q positive integers with (k, ¢) = 1 consider

k (mod 1) = b, 0< B <b,
(4.1) 1 i>1

= . concatenated sequence of b-ary digits.

Elementary number theory, of the type discussed in secondary school (see
HARDY and WRIGHT [6, Chapter IX]), tells us that, for every integer b > 1,

e The expansion defines of a unique infinite sequence of integers [3;.
e The expansion is ultimately periodic.
e If (b,q) = 1 the expansion is periodic.

All this is well known. What is seldom or never discussed is the explicit
determination of the period of the expansion as a function of b, ¢, and k.
To determine the period, we first note that

b1k (mod
(4.2) % SUBLHEN =12,
s>t

or, as a concatenated sequence,

= BeBr1 ...

in other words multiplying k/q by b= (mod 1) shifts the “b-ary point” (anal-
ogous to the decimal point) to just before the digit 3, discarding all digits
before the b-ary point. This pinpoints the digit ;.
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This suggests introducing a new map ¢ which is to play a role similar to p
given by (3.2). Define by

(4.3) ot bk (mod q)

a map from the positive integers Z% to the set Z;;l. Let t5 = s be the first
integer t in the sequence 1, 2, ... such that some point in Z;l is reached for
a second time, and let t; = r < s be the first time that the same point was
reached . Then

b* —b" =b"(b°"" —1) =0 (mod q).

Assuming that b, ¢ are coprime (denoted as (b, ¢) = 1) there exists a positive
integer b=! (mod ¢); multiplying the preceding relation by b~" gives

(4.4) b>" " =1 (mod q).

Comparing this result with the definition of the “shift” map o shows that the
least period of the expansion of ¢ in base b may be defined as

(4.5) m(q) =s—r.

Clearly this definition of 7 (g) is independent of k. The abstract construction
used in (4.5) gives no information about m(¢q) as a function of q. However,
elementary number theory, namely the “little Fermat theorem” and the Euler
function ¢ (see HARDY and WRIGHT [6, Theorems 71, 72, and 88], Hua [7,
Theorem 7.4, p. 48]), tells us much more, namely

(4.6) ()| ¢(q)

for all b, ¢ with (b, q) = 1. If ¢ = prime = p we have in particular, recalling
that o(p) =p — 1,

(4.7) ™ (p)lp — 1.

If, as a special case, m,(p) = p — 1, we call the prime p ergodic relative to b
or simply a b-ergodic prime.

To stress the importance of this definition, we recall that in elementary
number theory b is known as a primitive root of a prime p if and only if p — 1
is the least (integer) exponent [ for which

(4.8) b' =1 (mod p).

By the “little Fermat theorem” (4.8) is true with exponent [ = p — 1 for all
b < p; conversely, if (4.7) is true for [ < p—1 then { =0 (mod p — 1).

Thus, a fixed prime pq is ergodic relative to all b which are primitive roots
of po; and, dually, for a fixed by the bg-ergodic primes are those primes for
which by is a primitive root.
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m(61) | p(m(61)) | b
60 16 2,6, 7, 10, 17, 18, 26, 30, 31, 35, 43, 44, 51, 54, 55, 59
30 8 4, 5,19, 36, 39, 45, 46, 49
20 8 8, 23, 24, 28, 33, 37, 38, 53
15 8 12, 15, 16, 22, 25, 42, 56, 57
12 4 21, 29, 32, 40
10 4 3,27, 41, 52
6 2 14, 48
5 4 9, 20, 34, 58
4 2 11, 50
3 2 13, 47
2 1 60
1 1 1

m(61) | o(m(61)) | b
60 16 2,6, 7, 10, 17, 18, 26, 30, 31, 35, 43, 44, 51, 54, 55, 59
30 8 4, 5, 19, 36, 39, 45, 46, 49
20 8 8, 23, 24, 28, 33, 37, 38, 53
15 8 12, 15, 16, 22, 25, 42, 56, 57
12 4 21, 29, 32, 40
10 4 3,27, 41, 52
6 2 14, 48
5 4 9, 20, 34, 58
4 2 11, 50
3 2 13, 47
2 1 60
1 1 1

TABLE 1. Primitive roots of p = 61 relative to periods m;(61)|60.

Every odd prime has primitive roots; a standard theorem (Hua [7, Theorem
7.5, p. 48] and HARDY and WRIGHT [6, Theorem 110]) assures that p has
o(p — 1) primitive roots less than p. Moreover, for any I|p — 1 there will be
exactly ¢(!) numbers in Z;'_l which satisfy (4.7) with minimum exponent [.

Table 1 shows the primitive roots of p = 61 relative to all divisors of p—1 =
60. Aside from the trivial fact that m,_1(p) = 2 for all primes p, the entries for
b in Table 1 are clearly RANDOM (there is no obvious pattern).

It is not known if there are infinitely many b-ergodic primes for any given
integer b > 1.

Our interest in ergodic primes is solely due to the following easy observation:
Independently of k < q the map o given by (4.3) is an

(4.9) isomorphism on Z;r_l if and only if ¢ = p is a prime
which is ergodic relative to the base b.
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From this we get equally easily:

EQUIDISTRIBUTION OF DIGIT SEQUENCES. For any prime p and any
0 < k < p the sequence of digits given by the b-ary expansion of
k/p = .f1P2 ... induce a finite point set Xy (k,p) = {xx = Bitfry1... :t =
1,2 ..., T}

Claim: Xr(k,p) is as equidistributed as possible for large T if and only
if p = b-ergodic prime and, if so, X;,—1)(k,p) is independent of k (for any
positive integer [) and isomorphic with Z;;l/p.

The statistics of the periodic sequence k/p = .51 02 ... are also independent
of k. To see this, define t(k) by o(t) = b*~'k =1 (mod p), 0 < t < p. Then
1/p = .BtBy1 ..., that is, the decimal point for the sequence k/p is shifted
t — 1 steps to the right. Since the sequences are periodic independently of &,
the digits of k/p are simply shifted digits of 1/p and conversely. Note also that
t(k) is a RANDOM map k — .

“As equidistributed as possible” implies that each of the b possible values

h =0, ..., b—1 of the digits §; occur as equally often as possible. To see this,
simply partition the unit interval into the segments J, = [hb™!, (h + 1)b71),
h=0,1, ..., b—1. Then §; = h iff z; € J,. By equidistribution, the number

of points z; in each Jj, must be as equal as is possible, given the “granularity” of
the ratios k/p. To look for adjacent pairs of digits, let J, = [hb™2, (h + 1)b™2),
and so forth.

For example, p = 9931 is ergodic with respect to 10. Therefore the sequence
of digits will have a period 9930 for all k/p; since 9930 is divisible by 10, there
will be exactly 993 decimal digits of each type 0, ..., 9 within a period. On the
other hand, for adjacent digit-pairs the average number 99.3 is not an integer;
among the 100 possible pairs 00, 01, ..., 99 some will occur 99 times and others
will occur 100 times. The former case covers 70 pairs, the other 30 pairs, so
as to produce the exact average 99.3. Moreover, in the sequence of digit-pairs
00, 01, ..., 99 those thirty pairs occurring 100 times will be distributed “as
uniformly as possible” among those seventy pairs occurring 99 times. (The
reader should check this out for himself.)

To illustrate the practical implications of the equidistribution theorem, we
use the prime p = 61. We have already investigated the ergodicity of this prime
with respect to the base b < p. (See Table 1.) Table 2 shows sixty digits of
the expansion of 1/61 to various bases. Each line is a period, but it is not a
minimal period except in the ergodic cases b = 2, 6, 7, 10 and 30.

In the ergodic cases b = 2, 6, 10, 30 we see from Table 2 that each single
digit 0, 1, ..., b—1 occurs exactly the same number of times, that is, we have
exact equidistribution of single digits. This follows from the equidistribution
theorem and the (accidental) fact that b|p — 1 for the cases chosen. For b =7,
another ergodic case, the digits 0, 1, ..., 6 occur either 8 or 9 times (see Table
2); namely 0, 3, 6 occur eight times, and 1, 2, 4, 5 occur nine times; all this
follows rigorously from “as equidistributed as possible”.

If 61 is not ergodic relative to the given base, there is no equidistribution

191



Expansion of 61—1 to different bases b

bl m|1 11 21 31 41 51

2160 |0000010000 1100100101 1100010100 1111101111 0011011010 0011101011
3110]0001022212 0001022212 0001022212 0001022212 0001022212 0001022212
5(30]0020110332 1013044243 3411234314 0020110332 1013044243 3411234314
6|60|0033125040 4415445301 4342320220 5522430515 1140110254 1213235335
7160 |0054234463 5336211556 5251644062 6612432203 1330455110 1415022604
8120|0103113424 7674664353 0103113424 7674664353 0103113424 7674664353
9| 5|0128501285 0128501285 0128501285 0128501285 0128501285 0128501285
10|60 | 0163934426 2295081967 2131147540 9836065573 7704918032 7868852459
11| 4]01a901a901 a901a901a9 01a901a901 a901a901a9 01a901a901 a901a901a9
13| 3|02a02a02a0 2a02a02a02 a02a02a02a 02a02a02a0 2a02a02a02 a02a02al02a
14| 6|032dab032d ab032dab03 2dab032dab 032dab032d ab032dab03 2dab032dab
15|15 | 03a4db8562 32e3e03a4d b856232e3e 03a4db8562 32e3e03a4d b856232e3e
16 |15|04325c53ef 368eb04325 c53ef368eb 04325c53ef 368eb04325 c53ef368eb
21{12 | 074h49kdg3 gb074h49kd g3gb074h49 kdg3gb074h 49kdg3gb07 4h49kdg3gb
30|60 | Oemikjkd4rg 6qglj5c8ph 6bo2sfm3s0 tf7b9a9p2d n3d8aohl4c nibrle7qlt

Expansion of % to base 3
b‘ w‘l 11 21 31 41 51
3‘30‘0002121112 2102022201 0111001202 0002121112 2102022201 0111001202

TABLE 2. Behavior of the expansion of the prime 61 relative to different
bases, compared with prime 31 ergodic to base 3.

and the distribution depends on k. For example, for b = 15 the period is 15
and therefore in case of equidistribution each digit should occur just once, but
this is far from true. For b = 5 the period is 30 so that each digit should occur
exactly 6 times; however, the digit statistics are

digit |0 1 2
occurrences | 6 7 4

3 4
7 6
which is certainly not equidistribution. (The “dip” in the middle at the digit

2 is often observed, see also next section. The symmetry of the distribution
follows from the theory of k/p, p = ergodic, but will not be discussed here.)
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The binary sequence exhibited in Section 2 is the shifted binary expansion of
1/61 in Table 2, in fact, it is the binary expansion of 234 /61 (mod 1) = 29/61.

Irrespective of whether 61 is ergodic or not, all sequences in Table 2 ex-
hibit certain intuitively acceptable features of randomness; of course, they also
conform with our definition of RANDOMness.

This new class of random sequences of digits has one immediate practical
application: it enables precise statements to be made in a debate with the
“fanatical school” of probability theory.

The simplest problem of this sort concerns the existence of i.i.d. sequences
in the R-world. Although perhaps not a random example (I learned probability
from his book), the views expressed by FELLER [5, p. 105] seem typical of the
prejudices prevailing in the 1950’s:

“The Bernoulli scheme of trials is a theoretical model and only experience
can show whether it is suitable for the description of specified physical
experiments. Our knowledge that successive tossings of a coin conform to
the Bernoulli scheme is derived from experimental evidence’ The man in
the street . .. believes that after a run of seventeen heads tail becomes more
probable. This argument has nothing to do with imperfections of physical
coins; it endows nature with memory, or, in our terminology, it denies the

statistical independence of successive trials; ... [this] cannot be refuted by
logic but has been rejected because of lack of empirical support.” [My
italics.]

It is amazing that Feller, a subtle thinker (and superb mathematician), should
allow such confusion to arise in his own mind over the relationship between the
A-world and the R-world. Independence is certainly well defined (via proba-
bilities) in the .4-world, but it is inaccessible to rigorous experimental study in
the R-world. Our examples give, however, plenty of “empirical support” to the
contention that seventeen 1’s (i.e., heads) may not in some (and may in some
other) circumstances be followed by another 1 with the prescribed probability
of 1.

To be specific: for a 2-ergodic prime p there are four possibilities for the
binary expansion of 1/p (hence any k/p):

(1) If p < 2'7 there will be no sequence of seventeen 1’s;

(2) if 2'® > p > 27 (say), then there will be one sequence of seventeen 1’s but
none of eighteen 1’s so the conditional frequency (= analogous to condi-
tional probability here and hereafter) of another 1 immediately after sev-
enteen 1’s is zero;

(3) Ifp % 218 there will be no sequence of nineteen 1’s, one sequence of eighteen
1’s and two sequences of seventeen 1’s (which are, both, subsequences of
the single sequence with eighteen 1’s) but none with nineteen 1’s. For short
sequences of 1’s the conditional frequency of the next digit being either 0 or
1 will be very nearly 1. For the sequence (0)(seventeen 1’s) the conditional
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frequency of the next digit being either 0 or 1 will be exactly 0 and 1
(the next digit must be 1 to give a sequence of eighteen 1’s); and for the
sequence (1)(seventeen 1’s) the same frequency will be exactly 1 and 0 (the
next digit must be 0 since there is no sequence of nineteen ones). Thus the

conditional frequency of either 0 or 1 following seventeen 1’s will be exactly
1

5
(4) if p > 217 then there will be many sequences of seventeen 1’s, half as many
sequences of eighteen 1’s, one quarter as many sequences of nineteen 1’s,

and so on ...; hence the conditional probability of either 0 or 1 following
seventeen 1’s is very close to %

When Feller arrogantly accused the man in the street of “endowing Nature
with memory”!0 , he was probably not aware of how the size of an ergodic
prime (or more generally, the size of m2(q), see below) affects the “degree of
independence”, that is, why “independence” may continue to hold or to fail
after seventeen successive 1’s.

This discussion should not create the impression that the behavior of digits
of k/q is ergodic (with controlled properties) only for ¢ = ergodic prime. It
appears, but it is not yet a theorem, that (¢ = very large) almost always implies
(mp(q) = very large) and hence the property “very nearly ergodic” of the digit
sequence.

To make these vague remarks inoffensive, we note an interesting special
case'l

(4.10) m0(3") =372, r>2.

Checking the decimal-digit behavior of the fraction k/27, k # 0 (mod 3) by a
hand calculator shows rather erratic behavior, certainly not ergodic and very
much dependent on %k (there are only 3 digits!). However, the situation is
entirely different for large r:

The decimal digit sequence of the expansion of k/3", k # 0
(mod 3), is very nearly “as equidistributed as possible”

for large r; o given by (4.3) is an isomorphism

ZF._y = {k (mod 9) + 9Z,_.} and thus NOT independent of k.

(4.11)

Already for r = 4, this theorem predicts that the period of nine will contain
every digit except one (dependent on k).!2 For r = 9, 3° = 19683 and m10(3%) =
2187. Here the sets Z 4, and {W + Z3 57} are “almost” the same for
all k. The digits are shown in Table 3. By displaying the digits in groups of
five Table 3 gives the appearance of a piece of a table of 10° random numbers
(i.e., a random sample of 437 from the set 0 < n < 10%) but here with strictly
controlled properties.
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. . 1
Decimal Expansion of 5555

1 6 11 16 21 26 31 36 41 46
100005 08052 63425 29086 01331 09790 17426 20535 48747 65025
51 | 66665 80297 71884 36722 04440 38002 33704 21175 63379 56612
101 | 30503 48016 05446 32423 91911 80206 26936 95066 80892 14042
151 | 57481 07503 93740 79154 60041 66031 60087 38505 30915 00279
201 | 42894 88390 99730 73210 38459 58441 29451 81120 76411 11619
251 | 16374 53640 19712 44220 90128 53731 64659 85876 13676 77691
301 | 40882 99547 83315 55149 11344 81532 28674 49067 72341 61459
351 | 12716 55743 53503 02291 31738 04806 17792 00325 15368 59218
401 | 61504 85190 26571 15277 14271 19849 61642 02611 39054 00599
451 | 50210 84184 32149 57069 55240 56292 23187 52222 73027 48564
501 | 75130 82355 33201 23964 84275 77096 98724 78788 80251 99410
551 | 656894 42666 26022 45592 64339 78560 17883 45272 57023 82766
601 | 85464 61413 40242 84915 91728 90311 43626 47970 32972 61596
651 | 30137 68226 38825 38230 96072 75313 72250 16511 71061 32195
701 | 29543 26068 18066 35167 40334 29863 33384 13859 67586 24193
751 | 46644 31235 07595 38688 20809 83589 89991 36310 52177 00553
801 | 77737 13356 70375 45089 67128 99456 38368 13493 87796 57572
851 | 52451 35396 02702 84001 42254 73759 08144 08372 70741 24879
901 | 33749 93649 34207 18386 42483 36127 62282 17243 30640 65437
951 | 17929 17746 27851 44540 97444 49524 97078 69735 30457 75542
1001 | 34618 70649 79931 92094 70101 10247 42163 28811 66488 84824
1051 | 46781 48656 20078 24010 56749 47924 60498 90768 68363 56246
1101 | 50713 81395 11253 36584 87019 25519 48381 85235 99044 86104
1151 | 76045 31829 49753 59447 23873 39328 35441 75176 54829 04028
1201 | 85738 96255 65208 55560 63608 18980 84641 56886 65345 72981
1251 | 76091 04303 20581 21221 35853 27439 92277 59995 93557 89259
1301 | 76731 18935 12167 86059 03571 61001 87979 47467 35761 82492
1351 | 50622 36447 69598 13036 63059 49296 34710 15597 21587 15642
1401 | 94060 86470 55834 98450 43946 55286 28765 94015 13996 85007
1451 | 36676 31966 67174 71930 09195 75267 99776 45684 09287 20215
1501 | 41431 69232 33246 96438 55103 38871 10704 66900 37087 84230
1551 | 04623 27897 17014 68272 11299 09058 57846 87293 60361 73347
1601 | 55880 70924 14774 17060 40745 82126 70832 69826 75405 17197
1651 | 58166 94609 56155 05766 39739 87705 12625 10796 11847 78743
1701 | 07778 28583 04120 30686 37910 88756 79520 39831 32652 54280
1751 | 34344 35807 54966 21449 98221 81578 01148 19895 34115 73439
1801 | 00828 12579 38322 41020 16968 95798 40471 47284 45866 99182
1851 | 03525 88528 17151 85693 23781 94380 93786 51628 30869 27805
1901 | 72067 26616 87750 85098 81623 73621 90722 95889 85418 88939
1951 | 69415 23141 79749 02199 86790 63150 94243 76365 39145 45546
2001 | 91866 07732 56109 33292 68912 25931 00645 22684 55011 93923
2051 | 69049 43352 13128 08006 90951 58258 39556 97810 29314 63699
2101 | 63928 26296 80434 89305 49204 89762 73941 98038 91683 17837
2151 | 72798 86196 20992 73484 73301 83407 00096 53000 05080 52634

TABLE 3.

5. THE LAW OF LARGE NUMBERS IS NEITHER A CHILD NOR THE FATHER OF
PROBABILITY

Many people have thought about infrequent (or nonexistent) communication
between the A-world of probability and the R-world where the action is. This
includes even those who, like Feller, have taken a fanatical position on “inde-
pendence” (see the quote in the previous section). Feller writes [5, p. 141], as
a preamble to motivating the “law of large numbers”,

“On several occasions we have mentioned that our intuitive notion of [ab-
stract] probability is based on the following assumption. If in n identical
trials A occurs v times, and if n is very large, then v/n should be near the
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probability p of A. Clearly, a formal mathematical theory can never refer
directly to real life! 3 but it should at least provide theoretical counterparts
[that is, theorems in the A-world] to the phenomena [in the R-world] which
it tries to explain. Accordingly, we require that the vague introductory re-
mark [about the intuitive notion of probability] be made precise in the form
of a theorem [in the A-world].” (Brackets added by the writer for clarity.)

Feller then goes on to formulate the “law of large numbers” which, from
his point of view, makes more precise the intuitive notion of probability — as
regards events in the A-world.

The credibility of relating the A-world to the R-world in this way rests
largely on an unstated assumption:

the “law of large numbers” is an inseparable consequence of intuitive (or
abstract) probability; its truth is derived from probability (A-world defini-
tion) and only from probability; because it is true in the A-world, it should
be, more or less, true in the R-world as well.

Following the lead of R. A. Fisher, almost the whole field of statistics (after
about 1920 but not before) has been reorganized on the basis of this belief,
as articulated by Lindley in the remark quoted in the introduction. And it is
this unbending belief in abstract probability which among other, scientifically
objectionable features, forces the use of the so-called confidence intervals (see
discussion below).

In contrast to this line of arguments (which a scientist would qualify as
prejudiced), we wish to investigate other kinds of questions:

e Does the “law of large numbers” — note that the traditional label does not
include the word “probability” — exist (as a theorem) only in the A-world
of probability?

e Or does it exist (as an empirical fact or as a theorem) also in the R-world?

e If s0, is it a theorem that is logically independent of the abstract (for Feller,
intuitive) notion of probability?

By a statistical analysis of a generic example like those discussed in the last
section, we shall demonstrate:

The “law of large numbers” is independent of (abstract) probability. The
scientific content of this “law” is simply that it says something interesting
about “large numbers”.

And THAT IS ALL THERE IS TO IT!

No probability, as contrasted with frequency. To mention an obvious “ap-
plication”: from our point of view the success of classical statistical mechanics
could be explained simply by the fact that Avogadro’s number (A ~ 6 - 1023)
is a very large number indeed; moreover, this is an objective fact about the
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physical world, unrelated to any metaphysical or epistemological speculation
about probability.

The technical details of our argumentation are quite simple. Let us first
review the standard (FELLER [1550, p. 141]) formulation of the “law of large
numbers”.

Consider the (i.i.d.) Bernoulli process with two symbols, z; = 0 (tail) or
1 (head) (¢t =1, 2, ..., T), with Pr (1) = p and Pr (0) = 1 — p. By the
independence assumption, the probability of exactly S occurrences of 1’s in a
string of T' symbols is equal to the frequency of 1’s among the 27 possible se-
quences, weighted by the probability of each sequence which (by independence)
is determined solely by the total number S of 1’s and T'— S of 0’s:

T
(5.1) Pr {S occurrences of 1 in T cases} = <S>p5(1 —p)T=5.

The theorem called “law of large numbers” is concerned with the behavior of
the probability @ of the event “the mean of a sequence of length T is far from
p”; this probability is denoted as

1T
~N " —p
Tz;t

The theorem asserts (for all fixed 0 < r < 0.5) that the probability @ — 0
as T — oo. Notice that the formulation and claim of the theorem is in terms
of probabilities; this is natural and unavoidable because the entire discussion
takes place in the A-world.

We are interested in the symmetrical case where p = 1. To see how (5.2)
behaves, the discrete probability distributions of S given by (5.1) are shown
in Figure 5.1 from moderate to large values of T. (For better visualization,
adjacent discrete point of the distribution are connected by a straight line.) As
T — large the figures show the convergence of the distributions to a “narrow
pulse” having the shape of the Gaussian distribution centered at p = 0.5.

Convergence to “equidistribution” is obvious; the existence of the limit is
guaranteed by p = ergodic prime.

In short, the “law of large numbers” exists as a fact of Nature and not only
as a mathematical deduction from formalized intuitive probability.

A definitive mathematical formulation of this observation, however, is un-
available at this time.

The proof of the theorem requires two steps: (1) to show that (5.1) converges
with very good approximation to a suitably scaled Gaussian distribution; (2)
to estimate the “tails” of the distribution, i.e., the probability of the term in
{ } in (5.2), namely, the probability of the event |2 — p| > r.

The first step was an important and highly nontrivial result around 1720,
due to de Moivre. With computers, the pictures in Figure 5.1 tell practically
the whole story, so this step is of no further interest here.

(5.2) Pr {

> T} = Q(T’, T)
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The second step is the explicit calculation of the probability of the “bad”
cases arising from the tails of the distributions. The discussion began by view-
ing the Bernoulli process as a model for “random” 0/1 sequences in the real
world (see Feller’s comments). But now sequences corresponding to the tail of
the binomial distribution (which always include the sequence containing only
0’s and the sequence containing only 1’s) are declared as “bad”, that is, “not
sufficiently random”, because they violate the intuitive test for randomness,
that S/T ~ p.

The number 0 < r < 0.5 is “adjusted” to express the probabilist’s view
of what sequences should be exorcised in a “good” model of randomness. For
example, if r = 0.01 and 7' = 100 then |25 — T'| > 2 defines “bad”: the only
“good” sequences are those for which S =49, 50, or 51. The joint probability
of these events is

100 100 100
P “ » T =1 :27100
r {“good”, 00} {<4g>+<50>+<51>]’

which is quite small (~ 0.23565). As T increases, this number increases (mono-
tonically) so that (for fixed r) Pr {“good”} attains any value less than 1 for
suitably large T'. If Pr {“good”} = 0.99 statisticians would say that there is
99% confidence that a bad sequence violating |S/T — p| < r will not have “oc-
curred”. (Remember that this confidence is in the minds of the inhabitants of
the A-world, not of R-world.)

The operational meaning of the theorem is that a Bernoulli process is a
pretty good model of (intuitive) randomness in the A-world; not a perfectly
good one, however, especially not for short sequences, because of the need of
stating the criterion for a “good model” in terms of a T' large enough to produce
the desired confidence level.

These statements are rigorously correct in the A-world but in the R-world
their plausibility rests solely on the belief that actual sequences have the same
probabilities and the same independence properties as was assumed in the A-
world. Since RANDOM sequences constructed in the previous section certainly
do not satisfy the i.i.d. assumption beyond subsequences of length r (where
b" ~ T'), the standard version of the “law of large numbers” as just discussed
does not apply to such sequences.

But what does Nature actually do?

Consider the sequence of discrete probability distributions for the binary
digits of k/q, any 0 < k < q, q the 2-ergodic prime p = 4093 (~ 4098 = 2!?).
(In each graph, the discrete points of the distribution have been connected by
straight lines for better visualization.) The graph in Figure 5.2 looks quite
smooth for T = 10 (because the binary subsequences of length r < 12 are
almost exactly independent). But for large T' the graphs Figure 5.3-5 develop
a “fractal” appearance, while those for the i.i.d. Bernoulli sequence are smooth
for all 7. This shows clearly that the smoothness of the distributions as a
function of T is directly linked to the abstract i.i.d. assumption and it is not
to be expected in the R-world.
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The awkwardness of confidence intervals disappears; these distributions
have no tails (because sequences of length 7" having only 0’s or only 1’s must
satisfy 27 < p).

6. CONCLUSIONS

Whatever (intuitive, formalized, abstract) probability might be, and however
the axioms might be phrased to hide the underlying assumptions, physical prob-
ability has meaning only in relation to specific systems. It is NOT a universal
concept.

This does not mean that mainstream applications of probability — which
are based on finding conditions under which happenings in the R-world are
believed to mimic the state of affairs in the A-world — should be abandoned. It
does mean that we should take a new look at all the probabilistic and statistical
analysis to see what they really amount to in the R-world.
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FIGURE 5.1
The (discrete) binomial distribution for 7' = 10, 50, 200, 1000.

frequency * T
5

! T
1S/

0 0.1 O:
FIGURE 5.2

(Discrete) frequency of sequences of length 7' = 10 in the binary expansion of
(2-ergodic prime) for a fixed number S of 1’s, according to

i
1093
S/T = percentage of 1’s
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FIGURE 5.3
(Discrete) frequency of sequences of length 7' = 50 in the binary expansion of
= (2-ergodic prime) for a fixed number S of 1’s, according to

1093
S/T = percentage of 1’s

frequency * T
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FIGURE 5.4
(Discrete) frequency of sequences of length 7' = 200 in the binary expansion
of 55 (2-ergodic prime) for a fixed number S of 1’s, according to
S/T = percentage of 1’s
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FIGURE 5.5
(Discrete) frequency of sequences of length 7' = 1000 in the binary expansion
of 1555 (2-ergodic prime) for a fixed number S of 1’s, according to

S/T = percentage of 1’s
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REMARKS

1.

Indeed, Lindley’s advertisement in praise of probability has a formal simi-
larity with “there is only one God and X is its prophet”. This seems to be
relevant to distinguishing between “religious” and “scientific” intellectual
attitudes but, of course, should not be considered as derogatory in regard
to any religion or person.

. No typing error; these are the first 60 digits of the binary expansion of the

fraction 29/61. See Table 2.

The phrase “Bernoulli sequence” as used here has nothing to do with an
objective property of a sequence of 0’s and 1’s (because any such sequence
is allowed) but with the hypothesis that the sequence was generated in the
A-world, by tossing a fair coin. ,
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4.

10.

11.

12.

13.

Probability does not help much with uncertainty, either. Unless, like, ap-
parently, Lindley, we wish to live, in the A-world, incommunicado with the
R-world. By Borel’s theorem we are quite “sure” (if we are in the A-world,
then sure with probability 1) that the one millionth digit of /2 — 1 is a 5
with probability 11—0 or a 0 also with a probability %. But this does not
provide much “information”, simply because Borel’s theorem has nothing
to do with the given number whose one millionth digit we wish to know. On
the other hand, it is possible to compute the one millionth digit of v/2 — 1
(this is an important subspecialty of computational science), so there is no
uncertainty about the value of this digit in the R-world.

When “random” is used in the technical sense, corresponding to our defi-
nition, we write RANDOM for special emphasis.

To see what can be done about randomness without any direct appeal to
probability, please consult PiNcus [11].

It is quite possible that some number kt ( mod 1) has a common factor with
g but this is irrelevant to the problem formulation which works for all a =
rational. So, the requirement ¢ = prime is irrelevant; “equidistribution”,
is assured by the ergodic property valid for rational as well as irrational
«. In the rational case “ergodic” means that p acts on the whole set thl
and is not invariant on some proper subset; in the irrational case “ergodic”
means that there is no invariant interval J under the action of ¢ other than
the whole interval (0,1).

Please note also that when p = identity permutation, that is, ¥ = 1 and
a = 1/q, the sequence of points 1/q, 2/q, ..., (¢—1)/q in the unit interval
corresponding to ¢t = 1, 2, ..., ¢ — 1 very much satisfies the claim “as
equidistributed as possible”, even though these points “arrive regularly” in
Xgo1.

We may be permitted to wonder if Feller had experimented in binary arith-
metic, for example, dividing 1 by a large 2-ergodic prime. .

And we may surmise that the man in the street will have reciprocated by
accusing (an abstract mathematician like) Feller of not noticing a loaded
coin when he sees it.

This theorem shall not be proved here; the proof is similar to the proof of
75(2") = 2!72,1 > 2, given in HuA [7, Theorem 3.9.2, p. 50]. Note that
75(2) = m5(4) = 1; this fact is analogous to m9(3) = m10(9) = 1.)

If 0 < myys1 < 10 is the missing digit in the decimal expansion of k/81
(period = 9) then my/g; +k =0 (mod 9).

No, not clear. Not even true. If we were to take Feller’s opinion liter-
ally, there would never have been any Western science, no Copernicus, no
Galileo, no Newton, perhaps no Feller.
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